Pulmonary barotrauma
Background
- Occurs when diver breathing compressed air ascends too rapidly
Barotrauma Types
- Otic barotrauma
- Pulmonary barotrauma
- Sinus barotrauma
- Mask squeeze
- Barodentalgia (trapped dental air causing squeeze)
Diving Physiology
- Pascals Law applies to the diving body (without air filled areas such as lungs) states that the pressure applied to any part of the enclosed liquid will be transmitted equally in all directions through the liquid.
- Boyles Law applies to the diving body's air filled areas such as lungs, sinuses, middle ear, and states that the volume and pressure of a gas at a given temperature are inversely related.
- At 2 ATA (10m/33ft) a given gas would be 1/2 it's volume, at 3 ATA (20m/66ft) it would be 1/3 it's volume and so on.
- Dalton's Law applies to the total pressure of an ideal gas mixture being the sum of the partial pressures of each individual gas.
- Divers may used Enriched Air NITROX mixtures to proportionally increase partial pressures of oxygen and reduce partial pressures of nitrogen while diving.
- At extremes of depth, additional inert gasses such as helium in TRIMIX are used to further reduce partial pressures of both oxygen and nitrogen below toxic levels.
- Henry's Law applies to the dissolvability of gasses into fluids, including body tissues, being proportional to the partial pressure of the gas.
- The increased pressure at depth causes divers to breath their gas mix at increased pressure to defeat the external water pressure.
- Increased inhaled partial pressures of nitrogen increase risk of nitrogen narcosis, and dissolved nitrogen in tissues re-expanding in micro-bubbles on ascent is the essential cause of decompression sickness. This can affect divers at any depth, including commonly-seen recreational diving depths of 20m/60ft or less.
- Increased inhaled partial pressures of oxygen, generally beyond 1.4-1.6atm, increases risk of oxygen toxicity. This is typically not a substantial risk in common depths of recreational divers at 20m/60ft of depth or less, but can be for more advanced divers at deeper depths.
- The increased pressure at depth causes divers to breath their gas mix at increased pressure to defeat the external water pressure.
Clinical Features
- Symptoms occur minutes to hours after surfacing
- Can occur without rapid ascent in patients with obstructive lung disease
- Lung rupture can lead to:
Differential Diagnosis
Diving Emergencies
- Barotrauma of descent
- Otic barotrauma
- Pulmonary barotrauma
- Sinus barotrauma
- Mask squeeze
- Barodentalgia (trapped dental air causing squeeze)
- Barotrauma of ascent
- Pulmonary barotrauma (pulmonary overpressurization syndrome)
- Decompression sickness (DCS)
- Arterial gas embolism
- Alternobaric vertigo
- Facial baroparesis (Bells Palsy)
- At depth injuries
- Oxygen toxicity
- Nitrogen narcosis
- Hypothermia
- Contaminated gas mixture (e.g. CO toxicity)
- Caustic cocktail from rebreathing circuit
Barotrauma Types
- Otic barotrauma
- Pulmonary barotrauma
- Sinus barotrauma
- Mask squeeze
- Barodentalgia (trapped dental air causing squeeze)
Evaluation
- Clinical diagnosis; do not delay intervention for studies
- CXR
- Assess for alternate etiologies
Management
- Pneumomediastinum and pneumothorax do not require recompression; see management section on those pages
- Air embolism
- IVF (increases tissue perfusion)
- Rapid recompression
