COPD exacerbation: Difference between revisions

 
(72 intermediate revisions by 17 users not shown)
Line 1: Line 1:
==Background==
==Background==
*Airflow limitation (FEV1:FVC < 0.70) that is not fully reversible
*Persistent airflow limitation (FEV1:FVC < 0.70) that is progressive and not fully reversible
**Encompasses chronic bronchitis (85%) and emphysema (15%)
**The new definition from the GOLD initiative avoids either chronic bronchitis (85%) and emphysema (15%); most patients have mixture of both
*Acute exacerbations due to incr V/Q mismatch, not expiratory airflow limitation
*Although smoking is a major risk factor for developing COPD, only 15% of smokers actually develop COPD<ref>Bates C, et al. Chapter 73: Chronic Obstructive Pulmonary Disease. In: Tintinalli J. Tintinalli's Emergency Medicine. A comprehensive study guide. 7th ed. 2011: 511.</ref>
*Characterized by a combination of parenchymal destruction and small airway disease with failure of gas exchange
*Acute exacerbations due to increased V/Q mismatch, not expiratory airflow limitation
*Relative chronic hypoxia present in many
**Chronic hypoxia can induce [[pulmonary hypertension]], [[polycythemia]] and [[cor pulmonale]]


===Precipitants===
===Precipitants===
*Infection (75%)
*[[Infection]] (75%)
**50% viral, 50% bacterial
**50% viral, 50% bacterial
*Cold weather
*Cold weather and environmental pollution
*B-blockers
*[[Beta-blockers]]
*Narcotics
*[[Opioids]]
*Sedative-hypnotic agents
*[[Sedative/Hypnotic]] agents
*[[Pneumothorax]]
*[[Pneumothorax]]
*[[PE]]
*[[PE]]
*[[Congestive heart failure]]
*Trauma ([[rib fractures]], [[pulmonary contusion]])
*[[Bronchiectasis]]
*[[Tuberculosis]]
*[[Sarcoidosis]]
*Lobar atelectasis (mucous plugging)
*Noncompliance with prescription


===Pseudomonas Risk Factors===
===Pseudomonas Risk Factors===
#Recent hospitalization (>2 days within previous 3 months)
*Recent hospitalization (>2 days within previous 3 months)
#Frequent abx tx (>4 courses w/in past year)
*Frequent antibiotic treatment (>4 courses within past year)
#Severe underlying COPD (FEV1 < 50% predicted)
*Severe underlying COPD (FEV1 < 50% predicted)
#Previous isolation of pseudomonas
*Previous isolation of pseudomonas


==Clinical Presentation==
==Clinical Features==
*Increase in [[cough]], sputum, or [[dyspnea]]
*Increase in [[cough]], sputum, or [[dyspnea]] beyond the normal day-to-day variation
*[[Hypoxemia]]
*[[Hypoxemia]]
*Tachypnea
*Tachypnea
*Tachycardia
*[[Tachycardia]]
*HTN
*[[Hypertension]]
*Cyanosis
*Cyanosis
*[[AMS]]
*[[Altered mental status]]
*Hypercapnia
*[[Hypercapnia]]
*Accessory respiratory muscle use
*Pursed-lip exhalation


==Differential Diagnosis==
==Differential Diagnosis==
{{Wheeze DDX}}
{{Wheezing DDX}}
{{Wheezing DDX}}


==Work-up==
==Evaluation==
#VBG/ABG  
[[File:CXR3354 IM-1609-1001.png|thumb|[[CXR]] with hyperinflated lungs consistent with broncoconstriction.]]
##Perform if SpO2 <90% or concerned about symptomatic hypercapnia
*[[VBG]]/[[ABG]]
#Peak flow
**Perform if SpO2 <90% or concerned about symptomatic hypercapnia, however its routine use is not recommended
##<100 indicates severe exacerbation
**Monitoring the patient's clinical status and pulse oximetry is often sufficient
#CXR
**The decision to start noninvasive ventilation or to intubate should be guided to by the clinical state of the patient, presence of fatigue and response to therapy
##Consider if concerned for PNA or CHF
**For every increase in PaC02 of 10 mmHg, the pH should change by 0.08
#Sputum culture
*Peak flow
##Usually not indicated except for pt w/ recent antibiotic failure
**<100 L/min indicates severe exacerbation
*[[CXR]]
==Treatment==
**Consider if concerned for alternative/additional diagnoses (e.g. pneumonia, CHF, pneumothorax, effusions)
===Oxygen===
*Sputum culture
#Maintain PaO<sub>2</sub> of 60-70 or SpO<sub>2</sub> 90-94%
**Usually not indicated except for patient with recent antibiotic failure
#If unable to correct hypoxemia with a low FiO2 consider alternative diagnosis
*[[ECG]]
#Adequate oxygenation is essential, even if it leads to hypercapnia
**The most common dysrhythmias are [[atrial fibrillation]] and [[multifocal atrial tachycardia]]
#If hypercapnia leads to AMS, dysrhythmias, or acidemia consider [[Intubation]]
*Blood tests add little to the treatment of a COPD exacerbation
===Albuterol/ipratropium===
 
#Improves airflow obstruction and treatment should involve rapid administration upon recognition of COPD exacerbation. <ref>Celli BR. Update on the management of COPD. Chest. Jun 2008;133(6):1451-62.</ref>
*GOLD Grading (based on post-bronchodilator FEV1/FVC less than 70%):
===Steroids===
** I (mild COPD) -> FEV1 ≥ 80% of predicted
** II (moderate COPD) -> 50% ≤ FEV1 < 80% predicted
** III (severe COPD) -> 30% ≤ FEV1 < 50% predicted
** IV (very severe COPD) -> FEV1 < 30% of predicted
 
==Management==
===[[Oxygen]]===
*Some COPD patients accustomed to relative hypoxia, thus higher oxygen levels may--> loss of hypoxic vasoconstriction-->increased shunt + increased alveolar dead space + haldane effect --> suppression of respiratory drive cause  high levels of oxygen may cause loss of hypoxic vasoconstriction causing areas of increased shunt and increased alveolar dead space along with the Haldane effect and suppression of the respiratory drive.
**Do not withhold O<sub>2</sub> if SpO<sub>2</sub> <88%
*Maintain PaO<sub>2</sub> above 60 mmHg or SpO<sub>2</sub> 88-92%
**SpO<sub>2</sub> >93% associated with higher inpatient mortality
*If unable to correct hypoxemia with a low FiO2 consider alternative diagnosis
*Adequate oxygenation is essential, even if it leads to hypercapnia
*If hypercapnia leads to altered mental status, dysrhythmias, or acidemia consider [[Intubation]]
 
===[[Albuterol]]/[[ipratropium]]===
*Improves airflow obstruction and treatment should involve rapid administration upon recognition of COPD exacerbation. <ref>Celli BR. Update on the management of COPD. Chest. Jun 2008;133(6):1451-62.</ref>
===[[Steroids]]<ref>Do systemic corticosteriods improve outcomes in COPD exacerbations? Feb 2016. Annals of EM. 67(2):258-259</ref>===
Similar efficacy between oral and intravenous. Treatment options include:
Similar efficacy between oral and intravenous. Treatment options include:
*Methylprednisolone 1-2 mg/kg IV daily (usual adult dose 125mg)<ref>Eisner MD, et al: An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 182:693-718</ref>
*[[Hydrocortisone]] 100-125mg Q6H x 5 days
*[[Prednisone]] 40 mg PO daily
*[[Methylprednisolone]] 1-2mg/kg IV daily (usual adult dose 125mg)<ref>Eisner MD, et al: An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 182:693-718</ref>
*[[Prednisone]] 60mg x 1, then 40mg PO daily x 5 days
**For outpatients a 5 day dose appears equally effective as longer doses and a taper is not required.<ref>Eisner MD, et al: An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 182:693-718</ref>
===[[Magnesium]]===
*Mechanism: bronchial smooth muscle relaxation
*'''Studies have found that while helpful in asthma, results fail to demonstrate positive benefit for COPD'''<ref>Shivanthan MC, Rajapakse S. Magnesium for acute exacerbation of chronic obstructive pulmonary disease: A systematic review of randomised trials. Ann Thorac Med. 2014 Apr;9(2):77-80.</ref><ref>Jahanian F, Khatir IG, Ahidashti HA, Amirifard S. The Effect of Intravenous Magnesium Sulphate as an Adjuvant in the Treatment of Acute Exacerbations of COPD in the Emergency Department: A Double-Blind Randomized Clinical Trial. Ethiop J Health Sci. 2021 Mar;31(2):267-274. doi: 10.4314/ejhs.v31i2.9. PMID: 34158778; PMCID: PMC8188071.</ref>


For outpatients a 5 day dose appears equally effective as longer doses and a taper is not required.<ref>Eisner MD, et al: An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 182:693-718</ref>
===[[Antibiotics]]===
''Indicated for patients with purulent sputum, increased sputum production, or requiring [[EBQ:NIPPV_in_COPD|Non Invasive Positive Pressure Ventilation]]<ref>GOLD collaborators</ref> (NNT = 3 to prevent treatment failure and 8 to prevent death)<ref>Ram FS, Rodriguez-Roisin R, Granados-Navarrete A, et al. Antibiotics for exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2006; 19(2):CD004403.</ref>
*Antibiotics for COPD exacerbations have an NNT of<ref>Ram FS, et al. Antibiotics for exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2006.19(2).</ref>:
**3:1 to prevent conservative treatment failure
**8:1 to prevent short-term mortality
**20:1 to cause diarrhea
''
====Outpatient Healthy====
*Antibiotics should be a 3-5 day course and options include:
**[[Azithromycin]] 500mg PO once a day<ref>Rothberg MB, et al: Antibiotic therapy and treatment failure in patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease. JAMA 2010; 303:2035-2042</ref>
**[[Doxycycline]] 100mg PO BID
**[[Levofloxacin]] 500mg PO Daily<ref>Anzueto A, Miravitlles M: Short-course fluoroquinolone therapy in exacerbations of chronic bronchitis and COPD. Respir Med 2010; 104:1396-1403</ref>


===Antibiotics===
====Outpatient Unhealthy====
*GOLD collaborators recommend antibiotics for patients with purulent sputum or increased sputum production or those who required [[EBQ:NIPPV_in_COPD|Non Invasive Positive Pressure Ventilation]]
*Age >65, cardiac disease, >3 exacerbations/per year
*Antibiotics for COPD exacerbations have an NNT of 3 to prevent 1 conservative treatment failure and 8 to prevent 1 short-term mortality (NNTH of 20 to cause 1 case of diarrhea)<ref>Ram FS, et al. Antibiotics for exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2006.19(2).</ref>
*[[Levofloxacin]], [[Moxifloxacin]], OR [[Amoxicillin/Clavulanate]]
*Antibiotics should be a 3-5 day course and options include:
**[[Azithromycin]] 500mg PO BID<ref>Rothberg MB, et al: Antibiotic therapy and treatment failure in patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease. JAMA 2010; 303:2035-2042</ref>
**[[Doxycycline]] 500 mg PO BID
**[[Levofloxacin]] 500 mg PO BID<ref>Anzueto A, Miravitlles M: Short-course fluoroquinolone therapy in exacerbations of chronic bronchitis and COPD. Respir Med 2010; 104:1396-1403</ref>


#Outpatient Healthy
====Inpatient====
#*[[Azithromycin]] OR [[Doxycycline]] OR [[TMP/SMX]]
*If [[Pseudomonas]] risk factors then use:
#Outpatient Unhealthy
**[[Levofloxacin]] PO or IV OR [[Cefepime]] IV OR [[Ceftazidime]] IV OR [[Piperacillin/Tazobactam]] IV
#*Age >65, cardiac disease, >3 exacerbations/per year
*No pseudomonas risk factors:
#*[[Levofloxacin]]/[[Moxifloxacin]] OR [[Amoxicillin/Clavulanate]]
**[[Levofloxacin]] or [[Moxifloxacin]] PO or IV OR [[Ceftriaxone]] IV OR [[Cefotaxime]] IV  
#Inpatient
**Consider [[oseltamivir]] during influenza season
##If Pseudomonas risk factors the use:
##*[[Levofloxacin]] PO or IV OR [[Cefepime]] IV OR [[Ceftazidime]] IV OR [[Piperacillin/Tazobactam]] IV
##No pseudomonas risk factors:
##*[[Levofloxacin]] or [[Moxifloxacin]] PO or IV OR [[Ceftriaxone]] IV OR [[Cefotaxime]] IV  
###Consider oseltamivir during influenza season


===[[EBQ:NIPPV in COPD|Noninvasive ventilation]] (CPAP or BiPaP)===
===[[EBQ:NIPPV in COPD|Noninvasive ventilation]] (CPAP or BiPaP)===
#CPAP: start at low level and titrate up to max 15
*[[CPAP]]: start at low level and titrate up to max 15
#BiPAP: Start IPAP 8 (max 20), EPAP 4 (max 15)
*[[BiPAP]]: Start IPAP 8 (max 20), EPAP 4 (max 15)


====Outcomes====
*Improves acidosis and ease respiratory distress


''Contraindications:''
''Contraindications:''
#Uncooperative or obtunded pt
*Uncooperative or obtunded patient
#Inability to clear secretions
*Inability to clear secretions, high aspiration risk
#Hemodynamic instability
*Hemodynamic instability
*Upper airway obstruction, craniofacial trauma, recent craniofacial surgery


===Mechanical ventilation===
===[[Mechanical ventilation]]===
''Indications:''
''Indications:''
#Severe dyspnea w/ use of accessory muscles and paradoxical breathing
*Severe dyspnea with use of accessory muscles and paradoxical breathing
#RR>35 bpm with anticipated clinical course for respiratory failure
*RR>35 bpm with anticipated clinical course for respiratory failure
#PaO<sub>2</sub> <50 or PaO2/FiO2 <200
*[[Respiratory arrest]]
#pH <7.25 and PaCO2 >60
*PaO<sub>2</sub> <50 or PaO2/FiO2 <200
#Altered mental status  
*pH <7.25 and PaCO2 >60
#Cardiovascular complications (hypotension, shock, CHF)
*[[Altered mental status]]
*Cardiovascular complications ([[hypotension]], [[shock]], [[CHF]])
*Noninvasive ventilation failure
 
 
''Consider [[ketamine]] for sedation for intubation (in combination with paralytic) as ketamine has bronchodilatory effect
 
 
''General principles for ventilator settings''
*Consider pressure control to prevent markedly elevated peak pressures
*Maximize expiratory time by modifying I:E ratio
*If patient with worsening hypercarbia, may benefit from paradoxically decreasing respiratory rate to improve expiratory time and improve gas exchange


==Disposition==
==Disposition==
Consider hospitalization for:
Consider hospitalization for:
#Marked increase in intensity of symptoms (e.g. sudden development of resting dyspnea)
*Marked increase in intensity of symptoms (e.g. sudden development of resting dyspnea)
#Background of severe COPD
*Background of severe COPD
#Onset of new physical signs (e.g., cyanosis, peripheral edema)
*Worsening hypoxia or hypercarbia (from baseline)
#Failure of exacerbation to respond to initial medical management
*Onset of new physical signs (e.g., cyanosis, peripheral edema)
#Significant comorbidities
*Failure of exacerbation to respond to initial medical management
#Newly occurring arrhythmias
*Significant comorbidities
#Diagnostic uncertainty
*Newly occurring arrhythmias
#Older age
*Diagnostic uncertainty
#Insufficient home support
*Older age
*Insufficient home support


==See Also==
==See Also==
[[EBQ:NIPPV in COPD]]
[[EBQ:NIPPV in COPD]]


==Source==
==References==
<references/>
<references/>


[[Category:Pulm]]
[[Category:Pulmonary]]

Latest revision as of 07:17, 15 August 2025

Background

  • Persistent airflow limitation (FEV1:FVC < 0.70) that is progressive and not fully reversible
    • The new definition from the GOLD initiative avoids either chronic bronchitis (85%) and emphysema (15%); most patients have mixture of both
  • Although smoking is a major risk factor for developing COPD, only 15% of smokers actually develop COPD[1]
  • Characterized by a combination of parenchymal destruction and small airway disease with failure of gas exchange
  • Acute exacerbations due to increased V/Q mismatch, not expiratory airflow limitation
  • Relative chronic hypoxia present in many

Precipitants

Pseudomonas Risk Factors

  • Recent hospitalization (>2 days within previous 3 months)
  • Frequent antibiotic treatment (>4 courses within past year)
  • Severe underlying COPD (FEV1 < 50% predicted)
  • Previous isolation of pseudomonas

Clinical Features

Differential Diagnosis

Bronchoconstriction

Acute dyspnea

Emergent

Non-Emergent

Evaluation

CXR with hyperinflated lungs consistent with broncoconstriction.
  • VBG/ABG
    • Perform if SpO2 <90% or concerned about symptomatic hypercapnia, however its routine use is not recommended
    • Monitoring the patient's clinical status and pulse oximetry is often sufficient
    • The decision to start noninvasive ventilation or to intubate should be guided to by the clinical state of the patient, presence of fatigue and response to therapy
    • For every increase in PaC02 of 10 mmHg, the pH should change by 0.08
  • Peak flow
    • <100 L/min indicates severe exacerbation
  • CXR
    • Consider if concerned for alternative/additional diagnoses (e.g. pneumonia, CHF, pneumothorax, effusions)
  • Sputum culture
    • Usually not indicated except for patient with recent antibiotic failure
  • ECG
  • Blood tests add little to the treatment of a COPD exacerbation
  • GOLD Grading (based on post-bronchodilator FEV1/FVC less than 70%):
    • I (mild COPD) -> FEV1 ≥ 80% of predicted
    • II (moderate COPD) -> 50% ≤ FEV1 < 80% predicted
    • III (severe COPD) -> 30% ≤ FEV1 < 50% predicted
    • IV (very severe COPD) -> FEV1 < 30% of predicted

Management

Oxygen

  • Some COPD patients accustomed to relative hypoxia, thus higher oxygen levels may--> loss of hypoxic vasoconstriction-->increased shunt + increased alveolar dead space + haldane effect --> suppression of respiratory drive cause high levels of oxygen may cause loss of hypoxic vasoconstriction causing areas of increased shunt and increased alveolar dead space along with the Haldane effect and suppression of the respiratory drive.
    • Do not withhold O2 if SpO2 <88%
  • Maintain PaO2 above 60 mmHg or SpO2 88-92%
    • SpO2 >93% associated with higher inpatient mortality
  • If unable to correct hypoxemia with a low FiO2 consider alternative diagnosis
  • Adequate oxygenation is essential, even if it leads to hypercapnia
  • If hypercapnia leads to altered mental status, dysrhythmias, or acidemia consider Intubation

Albuterol/ipratropium

  • Improves airflow obstruction and treatment should involve rapid administration upon recognition of COPD exacerbation. [2]

Steroids[3]

Similar efficacy between oral and intravenous. Treatment options include:

  • Hydrocortisone 100-125mg Q6H x 5 days
  • Methylprednisolone 1-2mg/kg IV daily (usual adult dose 125mg)[4]
  • Prednisone 60mg x 1, then 40mg PO daily x 5 days
    • For outpatients a 5 day dose appears equally effective as longer doses and a taper is not required.[5]

Magnesium

  • Mechanism: bronchial smooth muscle relaxation
  • Studies have found that while helpful in asthma, results fail to demonstrate positive benefit for COPD[6][7]

Antibiotics

Indicated for patients with purulent sputum, increased sputum production, or requiring Non Invasive Positive Pressure Ventilation[8] (NNT = 3 to prevent treatment failure and 8 to prevent death)[9]

  • Antibiotics for COPD exacerbations have an NNT of[10]:
    • 3:1 to prevent conservative treatment failure
    • 8:1 to prevent short-term mortality
    • 20:1 to cause diarrhea

Outpatient Healthy

Outpatient Unhealthy

Inpatient

Noninvasive ventilation (CPAP or BiPaP)

  • CPAP: start at low level and titrate up to max 15
  • BiPAP: Start IPAP 8 (max 20), EPAP 4 (max 15)

Outcomes

  • Improves acidosis and ease respiratory distress

Contraindications:

  • Uncooperative or obtunded patient
  • Inability to clear secretions, high aspiration risk
  • Hemodynamic instability
  • Upper airway obstruction, craniofacial trauma, recent craniofacial surgery

Mechanical ventilation

Indications:

  • Severe dyspnea with use of accessory muscles and paradoxical breathing
  • RR>35 bpm with anticipated clinical course for respiratory failure
  • Respiratory arrest
  • PaO2 <50 or PaO2/FiO2 <200
  • pH <7.25 and PaCO2 >60
  • Altered mental status
  • Cardiovascular complications (hypotension, shock, CHF)
  • Noninvasive ventilation failure


Consider ketamine for sedation for intubation (in combination with paralytic) as ketamine has bronchodilatory effect


General principles for ventilator settings

  • Consider pressure control to prevent markedly elevated peak pressures
  • Maximize expiratory time by modifying I:E ratio
  • If patient with worsening hypercarbia, may benefit from paradoxically decreasing respiratory rate to improve expiratory time and improve gas exchange

Disposition

Consider hospitalization for:

  • Marked increase in intensity of symptoms (e.g. sudden development of resting dyspnea)
  • Background of severe COPD
  • Worsening hypoxia or hypercarbia (from baseline)
  • Onset of new physical signs (e.g., cyanosis, peripheral edema)
  • Failure of exacerbation to respond to initial medical management
  • Significant comorbidities
  • Newly occurring arrhythmias
  • Diagnostic uncertainty
  • Older age
  • Insufficient home support

See Also

EBQ:NIPPV in COPD

References

  1. Bates C, et al. Chapter 73: Chronic Obstructive Pulmonary Disease. In: Tintinalli J. Tintinalli's Emergency Medicine. A comprehensive study guide. 7th ed. 2011: 511.
  2. Celli BR. Update on the management of COPD. Chest. Jun 2008;133(6):1451-62.
  3. Do systemic corticosteriods improve outcomes in COPD exacerbations? Feb 2016. Annals of EM. 67(2):258-259
  4. Eisner MD, et al: An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 182:693-718
  5. Eisner MD, et al: An official American Thoracic Society public policy statement: Novel risk factors and the global burden of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 182:693-718
  6. Shivanthan MC, Rajapakse S. Magnesium for acute exacerbation of chronic obstructive pulmonary disease: A systematic review of randomised trials. Ann Thorac Med. 2014 Apr;9(2):77-80.
  7. Jahanian F, Khatir IG, Ahidashti HA, Amirifard S. The Effect of Intravenous Magnesium Sulphate as an Adjuvant in the Treatment of Acute Exacerbations of COPD in the Emergency Department: A Double-Blind Randomized Clinical Trial. Ethiop J Health Sci. 2021 Mar;31(2):267-274. doi: 10.4314/ejhs.v31i2.9. PMID: 34158778; PMCID: PMC8188071.
  8. GOLD collaborators
  9. Ram FS, Rodriguez-Roisin R, Granados-Navarrete A, et al. Antibiotics for exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2006; 19(2):CD004403.
  10. Ram FS, et al. Antibiotics for exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2006.19(2).
  11. Rothberg MB, et al: Antibiotic therapy and treatment failure in patients hospitalized for acute exacerbations of chronic obstructive pulmonary disease. JAMA 2010; 303:2035-2042
  12. Anzueto A, Miravitlles M: Short-course fluoroquinolone therapy in exacerbations of chronic bronchitis and COPD. Respir Med 2010; 104:1396-1403