Radiation exposure (disaster)
Background
- “Ionizing” radiation is electromagnetic or particulate which can create charged particles or ions
- "Non-ionizing radiation" ( e.g., light, microwaves, and radiowaves) does not have sufficient energy to eject an electron from another atom
- Ionization of biologically important molecules, e.g., DNA, can cause cellular death
- Ionizing radiation at higher doses can cause damage to actively dividing and undifferentiated cell types, e.g., stem and progenitor cells in the bone marrow, gastrointestinal system, and skin
Radiological and Nuclear Scenarios of Concerns
- Radiological exposure devices
- Radiological dispersal devices
- Nuclear power plant incidents/accidents
- Improvised nuclear devices
Radiological Exposure Devices (RED)
- A RED is a device that can cause exposure to ionizing radiation without the knowledge of the person being exposed
- Surreptitious placement of a RED could delay discovery and notification of the healthcare community
- Injury is based on the radiation dose received, whether accidental or intentional in nature
- A concealed RED scenario could result in serious injuries
Radiological Dispersal Devices (RDD)
- Any device used to spread radioactive material; more commonly thought of as an explosive device or “dirty bomb"
- Do not necessarily need to explode in order to spread radiological material into the environment
- Non-explosive RDD could cause environmental contamination that could lead to human contamination (e.g. use in facility ventilation systems, fumigation systems, etc.)
- Explosion of an improvised explosive devices (IED) with radioactive material could cause additional injury, internal contamination, and panic
- Persons near the epicenter of an explosion of a dirty bomb will sustain physical trauma, thermal burns, and embedded foreign bodies including radioactive shrapnel.
- Amount of physical damage from RDD would depend on amount and type of explosives used; additional radiological consequences would depend on source and physical properties as well as explosive device
- Removal of foreign bodies would require healthcare providers wear PPE and have access to radiation monitoring equiment (e.g. ring dosimeters)
- Management of internal contamination via inhalation or wounds might be required for some patients
Nuclear Power Plant (NPP) Incident/Accident
- The Fukushima Japan nuclear power plant disaster in March of 2011 was highly unusual and the first time that such a serious situation at a nuclear power plant resulted from an environmental disaster.
- Nuclear power plants use the energy created by the fissioning of atomic nuclei ("splitting" of the atom) to generate electricity. *Heat generated during fission process converts water to steam, which then is used to drive electricity-generating turbines
- Loss of power to coolant pumps can allow reactor core to overheat, which can then cause the radioactive core to "melt-down".
Nuclear Device Detonation
- 3 forms of energy released by nuclear detonation[1]
- Heat (35% of total)
- Shock or bomb blast (50%)
- Radiation (15%)
- The detonation of any kind or size of nuclear weapon would be expected to cause massive physical damage to a community and untold psychological devastation to its population. In 2009, the National Security Staff released the first edition of Planning Guidance for the Response to a Nuclear Detonation10 In this document, planners categorized the devastation, types of physical damage, and types of human injuries based upon distance from the detonation epicenter in zones. The second edition of this document, released in June 2010, updated recommendations and guidance based on intensive modeling efforts to try to further quantify the effects of a nuclear detonation in an urban American city. Part of the updates to the guidance includes further refinement of the proposed damage zones. The document’s authors called the area closest to the epicenter the Severe Damage (SD) zone; the adjacent area the Moderate Damage (MD) zone; and the affected area furthest away from the epicenter, the Light Damage (LD) zone. In addition, a dangerous fallout (DF) radiation zone, which is determined by the scattering of radiological material, is also defined3. The presumed “safe” and “dangerous” distances away from the epicenter vary from scenario to scenario in modeling efforts and would be made after-the-fact by the incident commander based upon types of damage found on the ground. Zone determinations would depend upon:
- The yield of the weapon
- Whether the detonation was at a height or at ground level, and
- The topographical features of the terrain and its structures.
Basic Principles
Physical Properties
- Radiation Types
- Gamma and xrays - deep penetration
- Alpha - hazard only if ingested/ inoculated since penetration only ~0.1mm
- Beta/electrons - penetrate only a few centimeters
- Dose
- Rads - dose absorbed by specific tissue.
- Gray (Gy) - international unit for absorbed dose. (1 Gy = 100 rads)
- REM - "Effective Dose" (100 rem = 1 sievert = 1 Gy)
- Principles of exposure
- Different radioactive particles have diff effects at same absorbed dose- so use effective dose for comparison
- Effect of radiation based on time of exp, distance and shielding
- Dose decreases rapidly with square of distance and decreases on 1/9th if triple distance
- Lead is an effective shield
- Radiation decays with time
- Iodine isotopes are short lived
- Cesium, stontium, cobalt are longer-lived
- Rate of decay also effects dose of exposure and may effect management decisions
Biological Principles
- Some cells may die but if cells role not critical for survival, may not see effect
- Rapidly dividing cells (e.g. GI and bone marrow) are most vulnerable
- Dose ~1Gy, cells survive but get cancer later
- Radiation-induced cancer dose related
- Leukemia within 2 yrs, solid tumors 5-10 or more yrs
- Beta rays from fallout only burn exposed skin
Clinical Features
- Presentation dependant on nature of exposure
- See acute radiation syndrome, blast injuries
- May be asymptomatic
- Radiation burn like thermal burn but signs can occur after a few days, vascular insufficiency after several months and causing necrosis of previously healed skin
Differential Diagnosis
Mass casualty incident
- Radiation exposure (disaster)
- Dirty bomb
- Bioterrorism
- Chemical weapons
- Mass shooting
- Natural Disaster (e.g. Hurricane, Earthquake, Tornado, Tsunami, etc)
- Unintentional large-scale incident (e.g. building collapse, train derailment, etc)
- Major pandemic
- Explosions
Evaluation
- Evaluate and stabilize any life threatening physical injuries (ABC's)
- Decontaminate after stabilized
- Check for external contamination
- document location, dose rate and/or count measurements initial and after decontamination, and description of decontamination methods/agents used
- Check for internal contamination
- swab both nostrils
- 24-hour stool and 24-hour urine samples
- Identify radionuclide (chemical form), solubility and particle character
- Document suspected route of contamination.
- External exposure to ionizing radiation
- document location and position of patient relative to source of radiation at time of exposure, as well as time and duration of exposure (including dosimeter information if applicable)
- Check for external contamination
- CBC q6-8h x 2-3 days
- Amylase; baseline and at 24h post exposure
Management
- Can be localized or whole body, internal or external deposition and contamination
- Mostly not emergency, just treatment symptoms and supportive care
- Consider contacting health physicist and/or radiation safety officer for help
Localized Exposure
- Treat wounds symptomatically
- Close wounds within 35-48 hours
- By direct handling. patient survives even though dose high since exposure drops rapidly with distance
- Treat burns with pain control, prophylactic antibiotics, vasodilator treatment, surgery, skin graft,
- Extent of penetration important factor in outcome
Whole Body Exposure
Those persons who receive a significant exposure from radiation may experience acute radiation syndrome (ARS), a systemic illness caused by exposure to a level of ionizing radiation sufficient to cause damage to the hematopoietic, gastrointestinal, cardiovascular or central nervous system
Dose | SubSyndrome | Potential Signs and Symptoms |
---|---|---|
N/A | Subclinical | |
1 GY (100 rad) | Hematopoietic | Lymphocytopenia – 24-48 hours
(worsens with increasing dose) Thrombocytopenia, Anemia - weeks |
6 Gy (600 rad) | Gastrointestinal | Nausea/vomiting, diarrhea with resulting hypovolemia and electrolyte shifts, |
10 Gy (1000 rad) | Neurovascular | Nausea, headache, lethargy, ataxia, confusion, seizures |
- Within 12hr, nausea/vomiting for 48hr
- Dose >30 gy: cardiovascular and CNS effects - hypotension, cerebral edema, seizure, nausea/vomiting/diarrhea, ataxia, death
- Dose 10-30 gy: GI syndrome: nausea and vomiting/diarrhea, then latent for 1 week, then recurrent nausea and vomiting/diarrhea this time with sepsis and death
- Hematopoietic symptoms- dose 2gy or higher- lymphocyte reduction within 48 hrs is indicator for rad exposure. get leukopenia and thrombocytopenia- bleeding and infection- may enhance recovery by hematopoietic factors
- Cutaneous symptoms- damaged skin may interact with other organ damage
- Amifostine- prophylactic radiation drug- causes hypotension as side effect
- Androstenediol- boosts immune system
- Bone marrow transplant not helpful
- Even if treatment and survive hematopoetic symptoms, still die from radiation pneumonitis, denuded GI tract, hepatic and renal dysfunction
Internal Contamination
- May enter thru burns, wounds, inhale, ingest
- Need to know type of radionuclide and chemical form
- Need to treatment quickly to be effective
- Reduce absorption, dilute, blockage, displacement by nonradioactive materials, mobilization, chelation
- Potassium iodine for nuc weapon detonation or reactor breach- prevents radioiodine from accumulating in thyroid. take shortly after exp to be effective- if give too much get iodism
- Dose- 130mg adults, 65mg 3- 18ys, 32mg 1mo- 3yr, 16mg for age< 1mo
- Chelators- calcium, zinc, only for plutonium or americium
External Contamination
- Clothes and exp skin- just clean up and prevent spread
- Clean with soap and water
- If extremis- stabilize first, then decontam
- Do not abraid skin while cleaning
Contaminated Burns and Wounds
- Irrigate
- Excise only if long acting radionuclides
- If whole body dose >1gy, close wound asap to prevent portal of infc
- In burns, radioactivity comes off with eschar and exudate
Disaster Management
- Preparation, crisis management, consequences
- FBI is lead agency in terrorist incident
- During consequence management, FEMA fed emerg management agency takes over
- Intervention- action to reduce exposure and dose of radiation
- If dose 1 rem- stay in doors up to 2 days- evacuate for 1 wk if dose of 5 rem or more
- Temperature relocation if dose 3 rem in first month or 1 rem in subsequent month
- Permanent resettlement if lifetime dose 100 rem
- Potassium iodine only if thyroid dose 100mgy or more
- EMS occupational dose of 5 rem per yr dose not apply- allowable dose goes up for lifesaving event
- At dose of 0.1 gy/hr- ems may go in for short time but dose may be life threatening
See Also
References
- ↑ Waselenko JK, MacVittie TJ, Blakely WF, et al. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann Intern Med. 2004 Jun 15;140(12):1037-51.